Abstract

In this paper, we propose a method for estimating Normal distribution parameters using genetic algorithm. The main purpose of this research is to identify the most efficient estimators among three estimators for Normal distribution; Maximum likelihood method (ML), the least square method (LS), and genetic algorithm (GA) via numerical simulation and three real data, carbonation depth of Concrete Girder Bridges data examples which are based on performance measures such as The Root Mean Square Error (RMSE), Kolmogorov-Smirnov test, and Chi squared test. The simulation studies are conducted to evaluate the performances of the proposed estimators and provide statistical analysis of the real data set. The numerical results, x^2, show that the genetic algorithm performs better than other methods for actual data and simulated data unless the sample size is small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.