Abstract

This study compares the proposed hybrid method (wavelet robust M-estimation) to the traditional method (wavelet ordinary least square) when there are de-noising or outlier problems for estimating multiple linear regression models using the statistical criterion root mean square error (RMSE). According to simulated and real data, the proposed hybrid method (wavelet robust M-estimation) is better than the classical method (Wavelet Ordinary Least Square) and more accurate. The root mean square error of the proposed hybrid method (wavelet robust M-estimation) is less than the Wavelet Ordinary Least Square. Therefore, it is recommended to use the hybrid proposed method to reduce the problem of outliers and de-noise data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.