Abstract

ABSTRACT This study examines the problem of parameter estimation in spatial econometric/social interaction models with non-random missing outcome data. First, we construct a sample selection model considering spatial lag (autoregressive) dependence. Then, we suggest a parameter estimation method for this model by slightly modifying the Bayesian Markov chain Monte Carlo algorithm proposed in an existing study. A simple illustration indicates that the proposed parameter estimation method performs well overall if the spatial autocorrelation is moderate (spatial parameter equals 0.5 or less), even under a relatively high missing data ratio (around 40%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.