Abstract

In this paper, we consider the problem of estimation of semi-linear regression models. Using invariance arguments, Bhowmik and King [2007. Maximal invariant likelihood based testing of semi-linear models. Statist. Papers 48, 357–383] derived the probability density function of the maximal invariant statistic for the non-linear component of these models. Using this density function as a likelihood function allows us to estimate these models in a two-step process. First the non-linear component parameters are estimated by maximising the maximal invariant likelihood function. Then the non-linear component, with the parameter values replaced by estimates, is treated as a regressor and ordinary least squares is used to estimate the remaining parameters. We report the results of a simulation study conducted to compare the accuracy of this approach with full maximum likelihood and maximum profile-marginal likelihood estimation. We find maximising the maximal invariant likelihood function typically results in less biased and lower variance estimates than those from full maximum likelihood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.