Abstract
ABSTRACTTime series of counts occur in many different contexts, the counts being usually of certain events or objects in specified time intervals. In this paper we introduce a model called parameter-driven state-space model to analyse integer-valued time series data. A key property of such model is that the distribution of the observed count data is independent, conditional on the latent process, although the observations are correlated marginally. Our simulation shows that the Monte Carlo Expectation Maximization (MCEM) algorithm and the particle method are useful for the parameter estimation of the proposed model. In the application to Malaysia dengue data, our model fits better when compared with several other models including that of Yang et al. (2015)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.