Abstract

각종 선거를 앞두고 여러 여론조사 기관들은 다양한 방법으로 선거 결과를 예측한다. 조사를 통한 선거 예측을 수행하는 데 있어서 발생할 수 있는 문제점 중 하나는 무응답이며 무응답 대체 방법에 따라 예측 결과는 완전히 다른 결과를 생산해 낼 수 있다. 본 연구에서는 무응답 대체의 방법으로 모형을 기반으로 한 대체 방법에 대하여 연구하였다. 특히, 최대 우도 추정 방법을 적용했을 때 무시할 수 없는 무응답 (non-ignorable non-response) 체계 하에서 발생할 수 있는 변방 값 문제를 해결하기 위해 Wei와 Tanner (1990)가 제안한 Monte Carlo EM 알고리즘을 적용하였다. 모의 실험을 통하여 MCEM 방법과 기존의 최대 우도 추정 방법, 베이지안 추정 방법 사이의 비교 연구를 진행하였고 그 결과 MCEM 방법이 기존 방법들에 대한 대안 방법으로 이용될 수 있음을 보였다. 또한 2012년에 시행된 제18대 대통령 선거 당일의 출구조사 자료를 적용하여 실증 분석을 수행하였다. 예측 결과를 비교하기 위해 Bautista 등 (2007)이 제안한 MWPE (modified within precinct error)를 이용하였다. In predicting an outcome of election using a variety of methods ahead of the election, non-response is one of the major issues. Therefore, to address the non-response issue, a variety of methods of non-response imputation may be employed, but the result of forecasting tend to vary according to methods. In this study, in order to improve electoral forecasts, we studied a model based method of non-response imputation attempting to apply the Monte Carlo Expectation Maximization (MCEM) algorithm, introduced by Wei and Tanner (1990). The MCEM algorithm using maximum likelihood estimates (MLEs) is applied to solve the boundary solution problem under the non-ignorable non-response mechanism. We performed the simulation studies to compare estimation performance among MCEM, maximum likelihood estimation, and Bayesian estimation method. The results of simulation studies showed that MCEM method can be a reasonable candidate for non-response model estimation. We also applied MCEM method to the Korean presidential election exit poll data of 2012 and investigated prediction performance using modified within precinct error (MWPE) criterion (Bautista et al., 2007).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.