Abstract

Single Source Shortest Path (SSSP) is one of the widely occurring graph problems where the paths are discovered from an origin vertex to all other vertices in the graph. In this paper, we discuss our experience parallelizing SSSP using OpenSHMEM. We start with the serial Dijkstra and Bellman-Ford algorithms, parallelize these algorithms, and adapt them to the Partitioned Global Address Space (PGAS) programming model. We implement the parallel algorithms using OpenSHMEM and introduce a series of optimizations to achieve higher scaling and performance characteristics. The implementation is evaluated on Titan with various graphs including synthetic Recursive Matrix (R-MAT) and small-world network graphs as well as real-world graphs from Facebook, Twitter, LiveJournal, and the road maps of California and Texas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call