Abstract

The Partitioned Global Address Space (PGAS) programming model is one of the most relevant proposals to improve the ability of developers to exploit distributed memory systems. However, despite its important advantages with respect to the traditional message-passing paradigm, PGAS has not been yet widely adopted. We think that PGAS libraries are more promising than languages because they avoid the requirement to (re)write the applications using them, with the implied uncertainties related to portability and interoperability with the vast amount of APIs and libraries that exist for widespread languages. Nevertheless, the need to embed these libraries within a host language can limit their expressiveness and very useful features can be missing. This paper contributes to the advance of PGAS by enabling the simple development of arbitrarily complex task-parallel codes following a dataflow approach on top of the PGAS UPC++ library, implemented in C++. In addition, our proposal, called UPC++ DepSpawn, relies on an optimized multithreaded runtime that provides very competitive performance, as our experimental evaluation shows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call