Abstract

This paper presents a parallel, GPU-based, deforming mesh-enabled unsteady numerical solver for solving moving body problems by using OpenACC. Both the 2D and 3D parallel algorithms based on spring-like deforming mesh methods are proposed and then implemented through OpenACC programming model. Furthermore, these algorithms are coupled with an unstructured mesh based, implicit time scheme integrated numerical solver, which makes the full GPU version of the solver capable of handling unsteady calculations with deforming mesh. Experiments results show that the proposed parallel deforming mesh algorithm can achieve over 2.5x speedup on K20 GPU card in comparison with 20 OpenMP threads on Intel E5-2658 V2 CPU cores. And both 2D and 3D cases are conducted to validate the efficiency, correctness, and accuracy of the present solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.