Abstract

Semiconductor nanocrystals and their variants are widely used in biological research as fluorescent probes. Their unique characteristics, such as intense brightness, tunable emission properties, and resistance to photobleaching, make them ideal candidates for single-molecule imaging and tracking with localization precision far beyond the diffraction limit. Their fluorescence polarization states and emission spectra can be further utilized to probe changes in their mechanical properties and residing nanoenvironments. We developed a three-dimensional (3D), polarization-sensitive, spectroscopic photon localization microscopy (3D-Polar-SPLM) that enables parallel 3D tracking of individual quantum rods (QRs) while simultaneously capturing their fluorescence spectra and polarization states. Using 3D-Polar-SPLM, we spatially localized individual QRs with a lateral localization precision of 8 nm and an axial localization precision of 35 nm. In addition, we achieved a spectral resolution of 2 nm and a polarization...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.