Abstract

In this paper, we aim at exploiting the power computing of a graphics processing unit (GPU) cluster for solving large sparse linear systems. We implement the parallel algorithm of the generalized minimal residual iterative method using the Compute Unified Device Architecture programming language and the MPI parallel environment. The experiments show that a GPU cluster is more efficient than a CPU cluster. In order to optimize the performances, we use a compressed storage format for the sparse vectors and the hypergraph partitioning. These solutions improve the spatial and temporal localization of the shared data between the computing nodes of the GPU cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.