Abstract
The multiplication of a vector by a matrix and the solution of triangular linear systems are the most demanding operations in the majority of iterative techniques for the solution of linear systems. Data-driven VLSI networks which perform these two operations, efficiently, for certain sparse matrices are introduced. In order to avoid computations that involve zero operands, the non-zero elements in a sparse matrix are organized in the form of non-overlapping stripes, and only the elements within the stripe structure of the matrix are manipulated. Detailed analysis of the networks proves that both operations may be completed in n global cycles with minimal communication overhead, where n is the order of the linear system. The number of cells in each network as well as the communication overhead, are determined by the stripe structure of the matrix. Different stripe structures for the class of sparse matrices generated in Finite Element Analysis are examined in a separate paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.