Abstract
SummaryTriangular linear systems are central to the solution of general linear systems and the computation of eigenvectors. In the absence of floating‐point exceptions, substitution runs to completion and solves a system which is a small perturbation of the original system. If the matrix is well‐conditioned, then the normwise relative error is small. However, there are well‐conditioned systems for which substitution fails due to overflow. The robust solvers xLATRS from LAPACK extend the set of linear systems which can be solved by dynamically scaling the solution and the right‐hand side to avoid overflow. These solvers are sequential and apply to systems with a single right‐hand side. This paper presents algorithms which are blocked and parallel. A new task‐based parallel robust solver (Kiya) is presented and compared against both DLATRS and the non‐robust solvers DTRSV and DTRSM. When there are many right‐hand sides, Kiya performs significantly better than the robust solver DLATRS and is not significantly slower than the non‐robust solver DTRSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.