Abstract

Scheduling jobs and tools is a significant problem for manufacturing systems. Inefficient job scheduling and tool loading planning may result in the underutilization of capital-intensive machines and a high machine idle time. Tools are transferred by a tool transporter (TT) between machines. Therefore, efficient scheduling of jobs, TT, and the tools with alternate machines enables a manufacturing system to increase machines’ utilization and decrease their idle times. This paper addresses machines, TT, and tools concurrent scheduling with alternate machines and only one copy of every tool variety is made available where the tools are costly, in a multi-machine flexible manufacturing system, taking into account tool transfer times for makespan (MS) minimization. The tools are placed in a central tool magazine, which shares and serves them to many machines to cut down the price of duplicating the tools in each machine. The problem is to assign machines from alternate machines, tools, and corresponding TT trips, including the deadheading trip and loaded trip, to job operations for MS minimization. This paper uses a nonlinear mixed-integer programming framework to present the problem, and a flower pollination algorithm (FPA) is employed to solve it. The results show that FPA outperforms the Jaya algorithm, and the usage of alternate machines for the operations reduces the MS. Reduction in MS indicates an improvement in utilization of resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call