Abstract
We studied parallel propagating electromagnetic waves in a magnetized quantum electron plasma of finite temperature, as an extension of our previous study on a zero temperature plasma. We obtained simple analytic dispersion relations in the long wavelength limit that included the thermal effect as correction terms to the zero temperature results. As in the zero temperature case, the lower branch of the R wave showed significant damping and became ill-defined at short wavelengths. Quantum effects seemed to give qualitative changes, such as the appearance of anomalous dispersion regions, to the classical dispersion relations when v_{F}/v_{th}≤0.2 for a set of exemplary parameters of v_{F}=0.1c and ω_{ce}/ω_{pe}=0.05 was used. We also noted that introduction of the Planck constant in the quantum Vlasov equation changed the shape of the anomalous dispersion region qualitatively, by forming a normal dispersion region in the middle of the original single broad anomalous dispersion region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.