Abstract

Ion-implanted AlGaN/GaN High Electron Mobility Transistors (HEMT) devices were studied thoroughly to look into the possibilities of enhancing efficiency for high-power and high-frequency electronic and gas sensing applications. A dedicated experimental design was created in order to study the influence of the physical parameters in response to high energy (by virtue of in-situ beam heating due to highly energetic implantation) ion implantation to the active device regions in nitride HEMT structures. Disorder or damage created in the HEMT structure was then studied carefully with electrical characterization techniques such as Hall, I-V and G-V measurements. The evolution of the electrical characteristics affecting the high-power, high-frequency and ultra-high efficiency gas sensing operations were also analyzed by subjecting the HEMT active device regions to progressive time-temperature annealing cycles. Our suggested model can also provide a functional process engineering window to control the extent of 2D Electron mobility in AlGaN/GaN HEMT devices undergoing a full cycle of thermal impact (i.e. from a desirable conductive region to a highly compensated one).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.