Abstract

This article presents six parallel multiobjective evolutionary algorithms applied to solve the scheduling problem in distributed heterogeneous computing and grid systems. The studied evolutionary algorithms follow an explicit multiobjective approach to tackle the simultaneous optimization of a system-related (i.e. makespan) and a user-related (i.e. flowtime) objectives. Parallel models of the proposed methods are developed in order to efficiently solve the problem. The experimental analysis demonstrates that the proposed evolutionary algorithms are able to efficiently compute accurate results when solving standard and new large problem instances. The best of the proposed methods outperforms both deterministic scheduling heuristics and single-objective evolutionary methods previously applied to the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.