Abstract

This work presents sequential and parallel evolutionary algorithms (EAs) applied to the scheduling problem in heterogeneous computing environments, a NP-hard problem with capital relevance in distributed computing. These methods have been specifically designed to provide accurate and efficient solutions by using simple operators that allow them to be later extended for solving realistic problem instances arising in distributed heterogeneous computing (HC) and grid systems. The EAs were codified over MALLBA, a general-purpose library for combinatorial optimization. Efficient numerical results are reported in the experimental analysis performed on well-known problem instances. The comparative study of scheduling methods shows that the parallel versions of the implemented evolutionary algorithms are able to achieve high problem solving efficacy, outperforming traditional scheduling heuristics and also improving over previous results already reported in the related literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call