Abstract

In this paper two well-known robust multigrid solvers for anisotropic operators on structured grids are compared: alternating-plane smoothers combined with full coarsening and plane smoothers combined with semi-coarsening. The study has taken into account not only numerical properties but also architectural ones, focusing on cache memory exploitation and parallel characteristics. Experimental results for the sequential algorithms have been obtained on two different systems based on the MIPS R10000 processor, but with different L2 cache sizes and memory bandwidths (an SGI O2 workstation and an SGI Origin 2000 system). Although the alternating-plane approach is the best choice for sequential implementations, experimental estimations show poor parallel efficiencies. For the semicoarsening alternative two different parallel implementations have been considered. The first one has optimal parallel characteristics but due to deterioration of the convergence properties its realistic efficiency is not satisfactory. In the second one, some processors remain idle during a short period of time on every multigrid cycle. However, the second parallel algorithm is more efficient since it preserves the numerical properties of the sequential version. Parallel experiments have also been taken on a Cray T3E system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.