Abstract
In this paper we develop a parallel approach for computing the modularity clustering often used to identify and analyse communities in social networks. We show that modularity can be approximated by looking at the largest eigenpairs of the weighted graph adjacency matrix that has been perturbed by a rank one update. Also, we generalize this formulation to identify multiple clusters at once. We develop a fast parallel implementation for it that takes advantage of the Lanczos eigenvalue solver and k-means algorithm on the GPU. Finally, we highlight the performance and quality of our approach versus existing state-of-the-art techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.