Abstract

In magnetic resonance imaging (MRI), acquisition speed is always an important issue. In this paper, we propose a promising technique to achieve parallel MRI (pMRI) on a single-channel spectrometer, using a novel Wireless Amplified Nuclear MR Detector (WAND) for spatial encoding in image reconstruction. For this, a planar structure double frequency WAND is designed and fabricated, where two of its frequencies - ‘signal’, ω1 and ‘idler’, ω2 are effectively utilized as two separate “channels” for accelerated acquisition. We provided a thorough background needed for the method and subsequently parallel imaging algorithms. Sum-of-Squares (SoS) reconstruction and GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA) reconstruction are used to reconstruct as well as to analyze the SNR in the resulting images and validate our hypothesis. Experimental results using phantom datasets demonstrate that the proposed method of parallel imaging yield a better sensitivity for the combined images (‘idler’ + ‘signal’) than the sensitivity acquired for each individual image and thus significantly improving the reconstruction quality with optimal signal-to-noise ratio. We also demonstrated the achievable acceleration factor of this approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call