Abstract

Electron-transfer dissociation (ETD) in a tandem mass spectrometer is an analytically useful ion/ion reaction technique for deriving polypeptide sequence information, but its utility can be limited by sequential reactions of the products. Sequential reactions lead to neutralization of some products, as well as to signals from products derived from multiple cleavages that can be difficult to interpret. A method of inhibiting sequential ETD fragmentation in a quadrupole ion trap is demonstrated here for the reaction of a triply protonated peptide with nitrobenzene anions. A tailored waveform (in this case, a filtered noise field) is applied during the ion/ion reaction time to accelerate simultaneously first-generation product ions and thereby inhibit their further reaction. This results in a approximately 50% gain in the relative yield of first-generation products and allows for the conversion of more than 90% of the original parent ions into first-generation products. Gains are expected to be even larger when higher charge-state cations are used, as the rates of sequential reaction become closer to the initial reaction rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call