Abstract

The results of a parallel implementation of a randomized vector algorithm for solving systems of linear equations are presented in the paper. The solution is represented in the form of a Neumann series. The stochastic method computes this series by sampling only random columns, avoiding multiplication of matrix by matrix and matrix by vector. We consider the case when the matrix is too large to fit in random-access memory (RAM). We use two approaches to solve this problem. In the first approach, the matrix is divided into parts that are distributed among MPI processes and stored in the available RAM of the cluster nodes. In the second approach, the entire matrix is stored on each node’s hard drive, loaded into RAM, and processed in parts. Independent Monte Carlo experiments for random column indices are distributed among MPI processes or OpenMP threads for both approaches to matrix storage. The efficiency of parallel implementations is analyzed. Results are given for a system governed by dense matrices of size $$10^4$$ and $$10^5$$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.