Abstract

Hydrogen bonding between nucleobases produces diverse DNA structural motifs, including canonical duplexes, guanine (G) quadruplexes, and cytosine (C) i-motifs. Incorporating metal-mediated base pairs into nucleic acid structures can introduce new functionalities and enhanced stabilities. Here we demonstrate, using mass spectrometry (MS), ion mobility spectrometry (IMS), and fluorescence resonance energy transfer (FRET), that parallel-stranded structures consisting of up to 20 G-AgI-G contiguous base pairs are formed when natural DNA sequences are mixed with silver cations in aqueous solution. FRET indicates that duplexes formed by poly(cytosine) strands with 20 contiguous C-AgI-C base pairs are also parallel. Silver-mediated G-duplexes form preferentially over G-quadruplexes, and the ability of Ag+ to convert G-quadruplexes into silver-paired duplexes may provide a new route to manipulating these biologically relevant structures. IMS indicates that G-duplexes are linear and more rigid than B-DNA. DFT calculations were used to propose structures compatible with the IMS experiments. Such inexpensive, defect-free, and soluble DNA-based nanowires open new directions in the design of novel metal-mediated DNA nanotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call