Abstract

Based on two-grid discretizations, some parallel finite element variational multiscale algorithms for the steady incompressible Navier–Stokes equations at high Reynolds numbers are presented and compared. In these algorithms, a stabilized Navier–Stokes system is first solved on a coarse grid, and then corrections are calculated independently on overlapped fine grid subdomains by solving a local stabilized linear problem. The stabilization terms for the coarse and fine grid problems are based on two local Gauss integrations. Error bounds for the approximate solution are estimated. Algorithmic parameter scalings are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, these algorithms can yield an optimal rate of convergence. Numerical results are given to verify the theoretical predictions and demonstrate the effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.