Abstract
A combination method of two-grid discretization approach with a recent finite element variational multiscale algorithm for simulation of the incompressible Navier–Stokes equations is proposed and analyzed. The method consists of a global small-scale nonlinear Navier–Stokes problem on a coarse grid and local linearized residual problems in overlapped fine grid subdomains, where the numerical form of the Navier–Stokes equations on the coarse grid is stabilized by a stabilization term based on two local Gauss integrations at element level and defined by the difference between a consistent and an under-integrated matrix involving the gradient of velocity. By the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.