Abstract
SummaryAn efficient parallelization of the dual‐primal finite‐element tearing and interconnecting (FETI‐DP) algorithm is presented for large‐scale electromagnetic simulations. As a nonoverlapping domain decomposition method, the FETI‐DP algorithm formulates a global interface problem, whose iterative solution is accelerated with a solution of a global corner problem. To achieve a good load balance for parallel computation, the original computational domain is decomposed into subdomains with similar sizes and shapes. The subdomains are then distributed to processors based on their close proximity to minimize inter‐processor communication. The parallel generalized minimal residual method, enhanced with the iterative classical Gram‐Schmidt orthogonalization scheme to reduce global communication, is adopted to solve the global interface problem with a fast convergence rate. The global corner‐related coarse problem is solved iteratively with a parallel communication‐avoiding biconjugate gradient stabilized method to minimize global communication, and its convergence is accelerated by a diagonal preconditioner constructed from the coarse system matrix. To alleviate neighboring communication overhead, the non‐blocking communication approach is employed in both generalized minimal residual and communication‐avoiding biconjugate gradient stabilized iterative solutions. Three numerical examples are presented to demonstrate the accuracy, scalability, and capability of the proposed parallel FETI‐DP algorithm for electromagnetic modeling of general objects and antenna arrays. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.