Abstract

Single molecule electronics might be a way to add additional function to nanoscale devices and continue miniaturization beyond current state of the art. Here, a combined top-down and bottom-up strategy is employed to assemble single molecules onto prefabricated electrodes. Protodevices, which are self-assembled nanogaps composed by two gold nanoparticles linked by a single or a few molecules, are guided onto top-down prefabricated nanosized nickel electrodes with sandwiched palladium layers. It is shown that an optimized geometry of multilayered metallic (top-down) electrodes facilitates the assembly of (bottom-up) nanostructures by surface charge interactions. Moreover, such assembly process results in an electrode-nanoparticle interface free from linking molecules that enable electrical measurements to probe electron transport properties of the nanoparticle-molecule-nanoparticle protodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call