Abstract

The error-resilient entropy coding (EREC) algorithm is an effective method for combating error propagation at low cost in many compression methods using variable-length coding (VLC). However, the main drawback of the EREC is its high complexity. In order to overcome this disadvantage, a parallel EREC is implemented on a graphics processing unit (GPU) using the NVIDIA CUDA technology. The original EREC is a finer-grained parallel at each stage which brings additional communication overhead. To achieve high efficiency of parallel EREC, we propose partitioning the EREC (P-EREC) algorithm, which splits variable-length blocks into groups and then every group is coded using the EREC separately. Each GPU thread processes one group so as to make the EREC coarse-grained parallel. In addition, some optimization strategies are discussed in order to obtain higher performance using the GPU. In the case that the variable-length data blocks are divided into 128 groups (256 groups, resp.), experimental results show that the parallel P-EREC achieves 32× to 123× (54× to 350×, resp.) speedup over the original C code of EREC compiled with the O2 optimization option. Higher speedup can even be obtained with more groups. Compared to the EREC, the P-EREC not only achieves a good speedup performance, but it also slightly improves the resilience of the VLC bit-stream against burst or random errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call