Abstract

Real-time computational ghost imaging (CGI) has received significant attention in recent years to overcome the trade-off between long acquisition time and high reconstructed image quality of CGI. Inspired by compound eyes, we propose a parallel computational ghost imaging with modulation patterns multiplexing and permutation to achieve a faster and high-resolution CGI. With modulation patterns multiplexing and permutation, several small overlapping fields-of-view can be obtained; meanwhile, the difficulty in alignment of illumination light field and multiple detectors can be well resolved. The method combining compound eyes with multi-detectors to capture light intensity can resolve the issue of a gap between detector units in the array detector. Parallel computation facilitates significantly reduced acquisition time, while maintaining reconstructed quality without compromising the sampling ratio. Experiments indicate that using m × m detectors reduce modulation pattern count, projector storage, and projection time to around 1/m2 of typical CGI methods, while increasing image resolution to m2 times. This work greatly promotes the practicability of parallel computational ghost imaging and provides optional solution for real-time computational ghost imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.