Abstract
Vector quantization (VQ) is a widely used algorithm in speech and image data compression. One of the problems of the VQ methodology is that it requires large computation time especially for large codebook size. This paper addresses two issues. The first deals with the parallel construction of the VQ codebook which can drastically reduce the training time. A master/worker parallel implementation of a VQ algorithm is proposed. The algorithm is executed on the DM-MIMD Alex AVX-2 machine using a pipeline architecture. The second issue deals with the ability of accurately predicting the machine performance. Using communication and computation models, a comparison between expected and real performance is carried out. Results show that the two models can accurately predict the performance of the machine for image data compression. Analysis of metrics normally used in parallel realization is conducted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have