Abstract
In this paper, a parallel asynchronous information algorithm for solving multidimensional Lipschitz global optimization problems, where times for evaluating the objective function can be different from point to point, is proposed. This method uses the nested optimization scheme and a new parallel asynchronous global optimization method for solving core univariate subproblems generated by the nested scheme. The properties of the scheme related to parallel computations are investigated. Global convergence conditions for the new method and theoretical conditions of speed up, which can be reached by using asynchronous parallelization in comparison with the pure sequential case, are established. Numerical experiments comparing sequential, synchronous, and asynchronous algorithms are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.