Abstract

To meet the growing requirements of today’s applications, multiprocessor architectures (MPSoCs) interconnected with a network on chip (NoC) are considered as a major solution for future powerful embedded systems. Mapping phase is one of the most critical challenge in designing these systems. It consists of assigning application’ tasks on the target platform which can have a considerable influence on the performance of the final system. Due to the large solutions’ research space generated by both the application complexity and the platforms, this mapping phase can no longer be done manually and hence it requires powerful exploration tools called DSE (Design Space Exploration Environment). This paper proposes a new tool for static mapping applications on NoC based on heterogeneous MPSoCs. This tool integrates several multiobjective optimization algorithms that can be specified in order to explore different solutions’ spaces, mainly: exact method, metaheuristics (population-based metaheuristics and single solution-based ones) as well as hybrid ones; it offers different cost functions (defined using analytical or simulation models). The user can specify them or define others easily and it provides an easy way to evaluate the performance of the Pareto front returned by different algorithms using multiple quality indicators. We also present a series of experiments by considering several scenarios and give guidelines to designers on choosing the appropriate algorithm based on the characteristics of the mapping problem considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.