Abstract

An experimental technique based on sorbent tube–thermal desorption–gas chromatography (ST–TD–GC) was investigated for the simultaneous determination of a cluster of eight volatile odorants (propionic acid, n-butyric acid, i-valeric acid, n-valeric acid, trimethylamine, phenol, indole, and skatole) and a reference compound (benzene). Calibration was made by direct injection of a liquid working standard (L-WS) into a quartz tube packed with three bed sorbent (Tenax TA, Carbopack B, and Carbopack X). To assess the relative performance between different detector systems, a comparative analysis was made using both mass spectrometry (MS) and a flame ionization detector (FID) with the aid of a TD system. In the TD–GC–MS analysis, calibration results were evaluated in two different modes, namely total ion chromatogram (TIC) and extracted ion chromatogram (EIC). In both FID and MS, the elution order of investigated odorants complied with the retention time index (RTI) values for the polar column with a coefficient of determination (R2) at or above 0.99. As a means to validate our detection approach, environmental samples from a bathroom and manhole (vacuum samples) as well as cat stool and wastewater (headspace samples) were also collected. The ST–TD method tested for the concurrent analysis of diverse odorants allowed us to measure a list of offensive odorants from those samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call