Abstract

LetG(V,E) be a simple undirected graph with a maximum vertex degree Δ(G) (or Δ for short), |V| =nand |E| =m. An edge-coloring ofGis an assignment to each edge inGa color such that all edges sharing a common vertex have different colors. The minimum number of colors needed is denoted by χ′(G) (called thechromatic index). For a simple graphG, it is known that Δ ≤ χ′(G) ≤ Δ + 1. This paper studies two edge-coloring problems. The first problem is to perform edge-coloring for an existing edge-colored graphGwith Δ + 1 colors stemming from the addition of a new vertex intoG. The proposed parallel algorithm for this problem runs inO(Δ3/2log3Δ + Δ logn) time usingO(max{nΔ, Δ3}) processors. The second problem is to color the edges of a given uncolored graphGwith Δ + 1 colors. For this problem, our first parallel algorithm requiresO(Δ5.5log3Δ logn+ Δ5log4n) time andO(max{n2Δ,nΔ3}) processors, which is a slight improvement on the algorithm by H. J. Karloff and D. B. Shmoys [J. Algorithms8 (1987), 39–52]. Their algorithm costsO(Δ6log4n) time andO(n2Δ) processors if we use the fastest known algorithm for finding maximal independent sets by M. Goldberg and T. Spencer [SIAM J. Discrete Math.2 (1989), 322–328]. Our second algorithm requiresO(Δ4.5log3Δ logn+ Δ4log4n) time andO(max{n2,nΔ3}) processors. Finally, we present our third algorithm by incorporating the second algorithm as a subroutine. This algorithm requiresO(Δ3.5log3Δ logn+ Δ3log4n) time andO(max{n2log Δ,nΔ3}) processors, which improves, by anO(Δ2.5) factor in time, on Karloff and Shmoys' algorithm. All of these algorithms run in the COMMON CRCW PRAM model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call