Abstract
Independent or parallel evolution of similar traits is key to understanding the genetics and limitations of adaptation. Adaptation from the same genetic changes in different populations defines parallel evolution. Such genetic changes can derive from standing ancestral variation or de novo mutations and excludes instances of adaptive introgression. In this issue of Molecular Ecology, Walden et al.(2020) investigate the scale of parallel climate adaptation from standing genetic variation between two North American Arabidopsis lyrata lineages, each formed by a distinct evolutionary history during the last glacial cycle. By identifying adaptive variants correlated with three ecologically significant climatic gradients, they show that instead of the same genetic variants or even genes, parallel evolution is only observed at the level of biological processes. The evolution of independent adaptive variants to climate in two genetically close lineages is explained by their different post-glacial demographic histories. Separate glacial refugia and strong population bottlenecks were probably sufficient to change the landscape of shared allele frequencies, hindering the possibility of parallel evolution.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.