Abstract

Using Software-Defined Networking (SDN), the flexibility and programmability of networks can be significantly increased through the decoupling of the control and data planes. However, network scale-up in large-scale data centers can rapidly increase the computational complexity of operations such as the shortest path calculation on the network topology or Quality-of-Service (QoS) routing, which, in turn, can cause scalability problems in current SDN controllers. This paper proposes ParaFlow, a multithreaded SDN controller that supports fine-grained parallelism by exploiting application parallelism and utilizing multi-/many-core resources to accelerate event processing. ParaFlow also provides a flow-based programming interface that allows application developers to program with network flows rather than various types of low-level events. Experimental results show that ParaFlow achieves satisfactory performance and scalability in the multithreaded case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.