Abstract

Phase change materials (PCMs) are potential candidates in passive thermal regulation and energy storage fields due to their high latent heat capacity around phase transition temperature. However, the leakage problem and low thermal conductivity are two obstructive factors for the extended application of PCMs. Herein, a series of paraffin@silicon dioxide microcapsules (Pa@SiO2)/graphene sheets (GS)/silicone rubber (SR) phase change composites (PCCs) were prepared. It is found that the inorganic SiO2 shell is conducive to enhancing the thermal conductivity of PCCs and the double encapsulation by the SiO2 shell and SR skeleton can restrict the leakage of liquid Pa during phase transition. With a Pa@SiO2 content of 70 wt%, the PCCs have a high latent heat of 126.1 J/g and enhanced thermal conductivity of 0.37 W m−1 K−1, which is 131.25% higher compared to that of pure SR. In addition, the introduction of graphene sheets further boosts the thermal conductivity of PCCs to 2.69 W m−1 K−1. The obtained PCCs lead to a surprising temperature decline of nearly 35 °C of a commercial lithium-ion battery during a high discharge rate (7.4 C). This work provides an efficient route to fabricate microcapsules-based PCCs for passive thermal regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.