Abstract

In the past few years, multiple-input multiple-output (MIMO) radar with electromagnetic vector sensor (EMVS) array, or called EMVS-MIMO radar, has attracted extensive attention in target detection. Unlike the traditional scalar sensor-based MIMO radar, an EMVS-MIMO radar can not only provides a two-dimensional (2D) direction finding of the targets but also offers 2D polarization parameter estimation, which may be important for detecting weak targets. In this paper, we investigate into multiple parameter estimations for a bistatic EMVS-MIMO radar in the presence of coherent targets, whose transmitting EMVS and receiving EMVS are placed in an arbitrary topology. Three tensor-aware spatial smoothing estimators are introduced. The core of the proposed estimators is to de-correlate the coherent targets via the spatial smoothing technique and then formulate the covariance matrix into a third-order parallel factor (PARAFAC) tensor. After the PARAFAC decomposition of the tensor, the factor matrices can be obtained. Thereafter, the 2D direction finding can be accomplished via the normalized vector cross-product technique. Finally, the 2D polarization parameter can be estimated via the least squares method. Unlike the state-of-the-art PARAFAC estimator, the proposed estimators are suitable for arbitrary sensor geometries, and they are robust to coherent targets as well as sensor position errors. In addition, they have better estimation performance than the current matrix-based estimators. Moreover, they are computationally efficient than the current subspace methods, especially in the presence of a large-scale sensor array. In addition, the proposed estimators are analyzed in detail. Numerical experiments coincide with our theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.