Abstract
The combination of amyloid beta and tau pathologies leads to tau-mediated neurodegeneration in Alzheimer’s disease. However, the relative contributions of amyloid beta and tau peptide accumulation to the manifestation of the pathological phenotype in the early stages, before the overt deposition of plaques and tangles, are still unclear. We investigated the longitudinal pathological effects of combining human-like amyloidosis and tauopathy in a novel transgenic rat model, coded McGill-R-APPxhTau. We compared the effects of individual and combined amyloidosis and tauopathy in transgenic rats by assessing the spatiotemporal progression of Alzheimer’s-like amyloid and tau pathologies using biochemical and immunohistochemical methods. Extensive behavioral testing for learning and memory was also conducted to evaluate cognitive decline. Additionally, we investigated brain inflammation, neuronal cell loss, as well as synaptic plasticity through acute brain slice electrophysiological recordings and Western blotting. Evaluation of Alzheimer’s-like amyloidosis and tauopathy, at the initial stages, unexpectedly revealed that the combination of amyloid pathology with the initial increment in phosphorylated tau exerted a paradoxical corrective effect on amyloid-induced cognitive impairments and led to a compensatory-like restoration of synaptic plasticity as revealed by electrophysiological evidence, compared to monogenic transgenic rats with amyloidosis or tauopathy. We discovered elevated CREB phosphorylation and increased expression of postsynaptic proteins as a tentative explanation for the improved hippocampal synaptic plasticity. However, this tau-induced protective effect on synaptic function was transient. As anticipated, at more advanced stages, the APPxhTau bigenic rats exhibited aggravated tau and amyloid pathologies, cognitive decline, increased neuroinflammation, and tau-driven neuronal loss compared to monogenic rat models of Alzheimer’s-like amyloid and tau pathologies. The present findings propose that the early accumulation of phosphorylated tau may have a transient protective impact on the evolving amyloid pathology-derived synaptic impairments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.