Abstract
We study the application of a tailored quasi-Monte Carlo (QMC) method to a class of optimal control problems subject to parabolic partial differential equation (PDE) constraints under uncertainty: the state in our setting is the solution of a parabolic PDE with a random thermal diffusion coefficient, steered by a control function. To account for the presence of uncertainty in the optimal control problem, the objective function is composed with a risk measure. We focus on two risk measures, both involving high-dimensional integrals over the stochastic variables: the expected value and the (nonlinear) entropic risk measure. The high-dimensional integrals are computed numerically using specially designed QMC methods and, under moderate assumptions on the input random field, the error rate is shown to be essentially linear, independently of the stochastic dimension of the problem—and thereby superior to ordinary Monte Carlo methods. Numerical results demonstrate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.