Abstract
We introduce a new discretization based on a polynomial Trefftz-DG method for solving the Stokes equations. Discrete solutions of this method fulfill the Stokes equations pointwise within each element and yield element-wise divergence-free solutions. Compared to standard DG methods, a strong reduction of the degrees of freedom is achieved, especially for higher polynomial degrees. In addition, in contrast to many other Trefftz-DG methods, our approach allows us to easily incorporate inhomogeneous right-hand sides (driving forces) by using the concept of the embedded Trefftz-DG method. On top of a detailed a priori error analysis, we further compare our approach to other (hybrid) discontinuous Galerkin Stokes discretizations and present numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.