Abstract

We report on a paper-based 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) assay for a simple, inexpensive, low reagent and sample consumption and high throughput analysis of antioxidant activity. The paper-based device was fabricated using a lamination method to create a 5-mm in diameter circular test zone that was embedded with a DPPH reagent. The analysis was carried out in one-step by dropping an antioxidant/sample onto the test zone. After reduction by the antioxidant, the DPPH radicals become stable DPPH molecules, resulting in a change in color from deep violet to pale yellow. The violet color intensity of DPPH was inversely proportional to the antioxidant activity of the samples, and was measured using imaging software. A high precision and a low limit of detection were found in the analysis of six standard antioxidants including gallic acid, trolox, ascorbic acid, caffeic acid, vanilliic acid and quercetin. The device was then validated against the traditional spectrophotometric DPPH assay by analyzing the antioxidant activity of 7 tea samples. The results showed no significant difference for gallic acid equivalent for all 7 samples obtained from the two methods at the 95% confidence level, indicating that the developed method was reliable for antioxidant activity analysis of real samples. Finally, the paper-based DPPH device was found to be stable over 10 days when stored in a refrigerator (2 - 4°C), making it an easy-to-use device for end-users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.