Abstract

Microfluidic paper-based analytical devices (µPADs) are indispensable tools for disease diagnostics. The integration of electronic components into µPADs enables new device functionalities and facilitates the development of complex quantitative assays. Unfortunately, current electrode fabrication methods often hinder capillary flow, considerably restricting µPAD design architectures. Here, laser-induced graphenization is presented as an approach to fabricate porous electrodes embedded into cellulose paper. The resulting electrodes not only have high conductivity and electrochemical activity, but also retain wetting properties for capillary transport. Paper-based electrofluidics, including a lateral flow device for injection analysis of alkaline phosphatase in serum and a vertical flow device for quantitative detection of HPV16 with a CRISPR-based assay are demonstrated. It is expected that this platform will streamline the development of diagnostic devices that combine the operational simplicity of colorimetric lateral flow tests with the added benefits and possibilities offered by electronic signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.