Abstract

Experiments are described on evaporative heat transfer to boiling water in upflow in a vertical electrically heated 0·497-in inside diameter tube at 1000 lbf/in2 (abs.). The main objects were to measure the surface temperature profiles in the region beyond the dry-out point in the channel where liquid ceased to flow on the channel wall, and to investigate the behaviour of the dry-out ‘interface’ between the ‘wetted wall’ and the ‘dry wall’ regions. The test section was made from ‘Nimonic’ as this can withstand the highest temperatures in the ‘dry wall’ region and also has a low temperature coefficient of electrical resistivity, thus allowing a uniform heat flux to be maintained with wide axial temperature variation. The temperature in the ‘dry wall’ region first increased rapidly with distance from the dry-out point, after which it either increased at a slower rate or, at high mass velocities, even decreased. The dry-out ‘interface’ moved reversibly down and up the channel as the heat flux was increased and decreased. Local surface temperatures showed no hysteresis with cycling of heat flux, in contrast with the pool boiling situation. A method of predicting the wall temperature profile in the ‘dry wall’ region has been developed. In this method, the heat-transfer process is considered as being in two steps: wall to superheated steam continuum, and steam continuum to water droplets. The first step was calculated from standard single-phase steam heat-transfer correlations, and the second step was calculated on the basis of simultaneous heat transfer to, and steam diffusion from, the droplets. It was important to take account of the slip between the droplets and the steam. Satisfactory agreement was obtained between measured and predicted wall temperature profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.