Abstract

BackgroundParaxial protocadherin (PAPC) plays a crucial role in morphogenetic movements during gastrulation and somitogenesis in mouse, zebrafish and Xenopus. PAPC influences cell-cell adhesion mediated by C-Cadherin. A putative direct adhesion activity of PAPC is discussed. PAPC also promotes cell elongation, tissue separation and coordinates cell mass movements. In these processes the signaling function of PAPC in activating RhoA/JNK and supporting Wnt-11/PCP by binding to frizzled 7 (fz7) is important.ResultsHere we demonstrate by loss of function experiments in Xenopus embryos that PAPC regulates another type of morphogenetic movement, the invagination of the ear placode. Knockdown of PAPC by antisense morpholinos results in deformation of the otic vesicle without altering otocyst marker expression. Depletion of PAPC could be rescued by full-length PAPC, constitutive active RhoA and by the closely related PCNS but not by classical cadherins. Also the cytoplasmic deletion mutant M-PAPC, which influences cell adhesion, does not rescue the PAPC knockdown. Interestingly, depletion of Wnt5a or Ror2 which are also expressed in the otocyst phenocopies the PAPC morphant phenotype.ConclusionsPAPC signaling via RhoA and Wnt5a/Ror2 activity are required to keep cells aligned in apical-basal orientation during invagination of the ear placode. Since neither the cytoplasmic deletion mutant M-PAPC nor a classical cadherin is able to rescue loss of PAPC we suggest that the signaling function of the protocadherin rather than its role as modulator of cell-cell adhesion is required during invagination of the ear placode.

Highlights

  • Paraxial protocadherin (PAPC) plays a crucial role in morphogenetic movements during gastrulation and somitogenesis in mouse, zebrafish and Xenopus

  • XPAPC is expressed with Wnt5a, Ror2 and xPAPC does not depend on frizzled-7 (xFz7) in the otic anlage During gastrulation and neurulation xPAPC is expressed in Spemann’s organizer and in presomitic mesoderm [5] whereas in later development its expression is restricted to the otic vesicle and the tail organizer (Figure 1A, A’)

  • At stage 28, the in situ hybridization signal (ISH) for xPAPC formed a donut-like shape with a light spot in the centre, which marks the inner cavity. xPAPC

Read more

Summary

Introduction

Paraxial protocadherin (PAPC) plays a crucial role in morphogenetic movements during gastrulation and somitogenesis in mouse, zebrafish and Xenopus. PAPC influences cell-cell adhesion mediated by C-Cadherin. PAPC promotes cell elongation, tissue separation and coordinates cell mass movements. In these processes the signaling function of PAPC in activating RhoA/JNK and supporting Wnt-11/PCP by binding to frizzled 7 (fz7) is important. Paraxial protocadherin PAPC stands out among the cadherin superfamily members by its binding partners, signaling activity and specific expression pattern. It is highly conserved among vertebrates and functional homology has been observed in mouse, zebrafish and Xenopus. Arcadlin binds to N-Cadherin and promotes its endocytosis thereby controlling the dentritic spine number [4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.