Abstract
R1 plants of the transgenic papaya line 55-1, which expresses a single coat protein (CP) gene of the mild strain of the papaya ringspot virus (PRSV) HA from Hawaii, were previously shown to be resistant only to PRSV isolates from Hawaii. Two transgenic papaya cultivars were subsequently derived from line 55-1. UH SunUp (SunUp) is homozygous for the CP gene insertion and UH Rainbow (Rainbow) is hemizygous for the CP gene because it is a F1 hybrid of a cross between SunUp and the nontransgenic papaya cultivar Kapoho. To determine the various parameters that affect the resistance of SunUp and Rainbow, plants at different developmental stages (younger and older) were inoculated with PRSV isolates from Hawaii, Brazil, Jamaica, and Thailand. Hawaiian isolates shared nucleotide sequence identities of 96.7–99.8% to the CP transgene, and the other isolates shared sequence identities of 89.5–92.5%. Resistance was affected by CP gene dosage, plant developmental stage, and CP sequence identity of the challenge isolate. Young and older hemizygous Rainbow plants were resistant to the homologous PRSV HA (99.8% homology to CP transgene), while only older Rainbow plants were resistant to the other Hawaiian isolates (96.7% homology). However, all inoculated Rainbow plants were susceptible to PRSV isolates collected from Jamaica, Brazil, and Thailand. In contrast, SunUp was resistant to all PRSV isolates, except the one from Thailand, regardless of the plant developmental stage. Resistance to the Thailand isolate, which shares 89.5% homology to the transgene, was observed only with SunUp plants inoculated at an older stage. Steady state RNA analysis and nuclear run-on experiments suggested that resistance of the transgenic papaya is RNA-mediated via post-transcriptional gene silencing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have