Abstract

Cyclic adenosine monophosphate (cAMP) plays a crucial role as a signaling molecule for capacitation, motility, and acrosome reaction in mammalian spermatozoa. It is well-known that cAMP degradation by phosphodiesterase (PDE) enzyme has a major impact on sperm functions. This study was undertaken to characterize cAMP-PDE activity in bovine spermatozoa. Total cAMP-PDE activity in cauda epididymal and ejaculated spermatozoa was 543.2±49.5 and 1252.6±86.5 fmoles/min/106 spermatozoa, respectively. Using different family-specific PDE inhibitors, we showed that in cauda epididymal and ejaculated spermatozoa, the major cAMP-PDE activity was papaverine-sensitive (44.5% and 57.5%, respectively, at 400nm, papaverine is a specific inhibitor of the PDE10 family). These data are supporting the functional presence of PDE10 in bovine spermatozoa and were further confirmed by western blot to be PDE10A. Using immunocytochemistry, we showed immunoreactive signal for PDE10A present on the post-acrosomal region of the head and on the flagella of ejaculated spermatozoa. Using papaverine, we showed that it promotes tyrosine phosphorylation of sperm proteins, phosphorylation of Erk1 and Erk2, and Ca2+ release from Ca2+ store. These results suggest that PDE10 is functionally present in bovine spermatozoa and is affecting different molecular events involved in capacitation, most probably by cAMP local regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.