Abstract

Surface-modified gold nanoparticles (GNPs) were synthesized via layer-by-layer process with alternating cationic polyallylamine and anionic poly(acrylic acid) polyelectrolyte layers leading to a highly hydrophilic biocompatible shell supporting colloidal stability. Afterwards, papain was covalently immobilized on the modified GNPs via amide coupling between the amino groups on papain and the terminal carboxylic groups of the modified GNPs by using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysulfosuccinimide sodium as coupling agents. The resultant papain-functionalized gold nanoparticles were characterized by surface plasmon resonance, dynamic light scattering and zeta potential measurements. The new technology resonant mass measurement was applied for determining the average number of papain molecules immobilized per GNP by measurement of the single nanoparticle buoyant mass in the range of femtograms. The activity of the immobilized enzyme was estimated by determination of the kinetic parameters (Km, Vmax and kcat) with the standard chromogenic substrate Nα-benzoyl-dl-arginine-4-nitroanilide hydrochloride. It was found that Km of immobilized and free enzyme are in the same order of magnitude. On contrary, turnover numbers kcat were significantly higher for GNP-conjugated papain. Further, the gold nanobiocatalyst was applied for digestion of polyclonal human immunoglobulin G to yield protein fragments. The resultant fragment mixture was further analyzed by high-performance liquid chromatography-microelectrospray ionization-quadrupole-time-of-flight mass spectrometry, which demonstrated the applicability of the bioreactor based on papain functionalized GNPs. The immobilized papain not only has higher catalytic activity and better stability, but also can be easily isolated from the reaction medium by straightforward centrifugation steps for reuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call