Abstract

The purpose of pansharpening is to fuse a multispectral (MS) image with a panchromatic (PAN) image to generate a high spatial-resolution multispectral (HRMS) image. However, the traditional pansharpening methods do not adequately take consideration of the information of MS images, resulting in inaccurate detail injection and spectral distortion in the pansharpened results. To solve this problem, a new pansharpening approach based on adaptive high-frequency fusion and injection coefficients optimization is proposed, which can obtain an accurate injected high-frequency component (HFC) and injection coefficients. First, we propose a multi-level sharpening model to enhance the spatial information of the MS image, and then extract the HFCs from the sharpened MS image and PAN image. Next, an adaptive fusion strategy is designed to obtain the accurate injected HFC by calculating the similarity and difference of the extracted HFCs. Regarding the injection coefficients, we propose injection coefficients optimization scheme based on the spatial and spectral relationship between the MS image and PAN image. Finally, the HRMS image is obtained through injecting the fused HFC into the upsampled MS image with the injection coefficients. Experiments with simulated and real data are performed on IKONOS and Pléiades datasets. Both subjective and objective results indicate that our method has better performance than state-of-the-art pansharpening approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call